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SUMMARY

In this paper, we present the ‘conformal Petrov–Galerkin’ (CPG) method in order to solve the 2D
convection–diffusion equation on meshes composed of triangular elements. By ‘conformal’ it is meant
that the discrete system is obtained from the continuous weak formulation by appropriately selecting
different finite-dimensional subspaces for the shape and test functions without any additional stabilizing
term. Our approach is based on searching continuous test functions that provide exact nodal values for a
selected class of solutions. This method induces a stabilizing upwinding effect that removes the wiggles
obtained with the Galerkin method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Galerkin finite element (FE) method is very well suited for diffusion-dominated problems while
it performs quite badly when transport effects prevail. Therefore, the solution of the convection–
diffusion equation has been the object of extensive investigations, since this generic equation
exhibits the principal numerical difficulties to be addressed for the solution of convection-dominated
problems. A single parameter, the Péclet number, Pe (the ratio of transport versus diffusion effects),
governs this equation. At low Pe, when diffusion dominates, the system is close to a functional
minimization problem [1]. Accordingly, the solution wiggles tend to be strongly reduced (in the
‘energy norm’). On the contrary, at high Pe, when transport prevails, the discrete eigenvalues tend
to become purely imaginary and the discrete system no longer exhibits any natural wiggle reduction
effect. To solve the problem, Brooks and Hughes developed the streamline upwind/Petrov–Galerkin
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(SUPG) technique in order to remove the solution oscillations at high Pe [2–6]. The SUPG method
is consistent since the exact solution is a solution of the discrete problem. However, it is not
a conformal Petrov–Galerkin method (CPG) [7, 8] in the sense that the discrete system is not
exactly obtained by introducing appropriate finite-dimensional shape and test function spaces into
the original continuous weak formulation. Nevertheless, defining a consistent and conformal FE
method (such as Galerkin’s method) in order to solve the convection–diffusion problem represents
a highly attractive objective (which is the aim of this paper) and it should be emphasized that this
elegant approach was never completely investigated, except in Perella’s pioneer work [9].

It is worth noting that the present work is in keeping with the general pattern of investigations on
the numerical solution of the convection–diffusion equation, from which very attractive alternative
techniques, such as the residual-free bubbles FE method [10, 11] and the discontinuous Galerkin
method [12, 13], have been proposed by various authors.

2. PRINCIPLES OF THE METHOD

2.1. Strong formulation

Let � and � denote an open-bounded set of R2 and its boundary. The strong normalized boundary
value problem consists in searching a ‘temperature’ field T (x) such that

v ·∇T − 1

Pe
�T =0 in � (1)

T =T on � (2)

where Pe and v stand for the global Péclet number and an assumed divergence-free vector field,
while T :�→R is a prescribed function.

2.2. Weak formulation

The weak formulation of the boundary value problem (1)–(2) is expressed as follows:
Find T ∈ S such that

∀T ′ ∈V,

∫
�
T ′v ·∇T d�+ 1

Pe

∫
�

∇T ′ ·∇T d�=0 (3)

with the function spaces

S={T ∈H1(�)|T =T on �} and V ={T ∈H1(�)|T =0 on �}=H1
0 (�)

2.3. Galerkin FE approximation

The discrete Galerkin FE problem corresponding to the previous weak formulation is expressed
as follows:

Find T h ∈ Sh such that

∀T h′ ∈V h,

∫
�
T h′v ·∇T h d�+ 1

Pe

∫
�

∇T h′ ·∇T h d�=0 (4)
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where the FE subspaces Sh ⊂ S and V h ⊂V consist of continuous piecewise linear polynomials
defined on a conforming triangulation Th of �.

The functions of Sh and V h can be expressed as linear combinations of the Lagrange shape
functions �i . For each element e, we will denote by �e

�, �=1, . . . ,3, the restrictions to e of the
shape functions �i associated with the nodes of e.

2.4. Petrov–Galerkin FE approximation

The discrete Petrov–Galerkin FE problem expresses exactly as the Galerkin FE problem,
Equation (4), but the test function space V h has to be appropriately redefined by means of a set of
global generating functions �i , i=1, . . . ,N , whose local restrictions to element e are denoted by
�e

�, �=1, . . . ,3. These test functions are first expressed as modifications of the Lagrange shape
functions �e

�:

�e
� =�e

�+�̃
e
�

with the perturbation functions �̃
e
� vanishing on the element boundaries to ensure discretization

conformity. As an additional condition the linear space generated by the test functions is required
to satisfy the partition of unity property (and hence to contain the constant functions) in order to
keep the global and local conservation properties of the Galerkin method [14].

In the general problem, v is not constant but this case will be considered at a later stage and,
in order to define the searched test functions, it will be first assumed that v is constant.

Our technique is based on searching bubble functions �̃
e
� that provide exact internal nodal

values for a particular solution, denoted by T p(x), provided the exact nodal values of T p(x) be
imposed along the domain boundary. In other words, we are not directly searching for a discrete
solution to Equation (4), but a better discrete equation approximating Equation (1), which provides
exact nodal values to the numerical solution in some particular cases. To this end, we consider a
non-vanishing vector m and the following particular solution:

T p(x)=e(Pe(m·v)(m·x))/m·m

This solution is sharp and badly resolved by the Galerkin method at high Pe. It will be briefly
shown below that obtaining a nodally exact numerical approximation of T p(x) for any mesh from
exact nodal boundary conditions only requires the following conditions to be satisfied by the 0th
order moments (or average values) �e� of the perturbations:

�e1 = 1

Se

∫
Se

�̃
e
1 dS=[(Pee1−Ge

11)e
−4Ge

32Pe
e,m
1 −Ge

12e
−4Ge

13Pe
e,m
2 −Ge

13e
−4Ge

21Pe
e,m
3 ]/D− 1

3

�e2 = 1

Se

∫
Se

�̃
e
2 dS=[(Pee2−Ge

22)e
−4Ge

13Pe
e,m
2 −Ge

23e
−4Ge

21Pe
e,m
3 −Ge

21e
−4Ge

32Pe
e,m
1 ]/D− 1

3

�e3 = 1

Se

∫
Se

�̃
e
3 dS=[(Pee3−Ge

33)e
−4Ge

21Pe
e,m
3 −Ge

31e
−4Ge

32Pe
e,m
1 −Ge

32e
−4Ge

13Pe
e,m
2 ]/D− 1

3

(5)

where

D=Pee1e
−4Ge

32Pe
e,m
1 +Pee2e

−4Ge
13Pe

e,m
2 +Pee3e

−4Ge
21Pe

e,m
3 (6)
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while Se stands for both the domain and the area of element e, and Ge
��, Pe

e
�, and Pee,m� denote

non-dimensional parameters. The coefficients Ge
�� are geometrical shape factors defined by

Ge
�� = Se∇�e

� ·∇�e
� (7)

while Pee� and Pee,m� are element Péclet numbers given by

Pee� =Pe Sev ·∇�e
�, Pee,m� = Pe Se(m·v)(m·∇�e

�)

m·m (8)

The demonstration of these conditions will be presented in detail in [15] and we only give here
a sketch of the developments. To prove conditions (5), it is sufficient to observe that the equation
provided by the test function �i only involves the unknowns associated with the nodes that belong
to the support supp(�i ) of �i . This set of nodes will be denoted by n(i); and hence, denoting
T p(xn) by Tn , the equation associated with global node i is expressed as

∑
n∈n(i)

Tn

[∫
supp(�i )

(�i +�̃i )v ·∇�n d�+ 1

Pe

∫
supp(�i )

∇(�i +�̃i ) ·∇�n d�

]
=0

Since the support of �i consists of the set of elements e(i) that share node i , each integral over
supp(�i ) can be split into integrals over these different elements. For the sake of convenience, we
here switch to a description involving a local node numbering and, without loss of generality, we
assume that node i has 1 as local index for each element of supp(�i ) (these elements surround
node i). Then, the equation is expressed as

∑
e∈e(i)

3∑
�=1

T e
1

T e
�

[∫
�e

(�e
1+�̃

e
1)v ·∇�e

� d�+ 1

Pe

∫
�e

∇(�e
1+�̃

e
1) ·∇�e

� d�

]
=0

Let us now observe that obviously for an internal mesh node i ,∑
e∈e(i)

Peei =0 or
∑

e∈e(i)
Pee1=0 using the local node numbering

Therefore, the equation for node i equivalently is rewritten as

∑
e∈e(i)

3∑
�=1

T e
1

T e
�

[∫
�e

(�e
1+�̃

e
1)v ·∇�e

� d�+ 1

Pe

∫
�e

∇(�e
1+�̃

e
1) ·∇�e

� d�

]
+C

∑
e∈e(i)

Peei =0 (9)

where C is an arbitrary constant for the entire domain. Integrating by parts the diffusive term on
each element e readily shows that∫

�e
∇(�e

�+�̃
e
�) ·∇�e

� d�=
∫

�e
∇�e

� ·∇�e
� d�

because �̃
e
� vanishes on the boundary of the element and �e

� is linear. Then the contribution Ee
i

of element e∈e(i) to the global equation i is expressed as

Ee
i =

3∑
�=1

T e
1

T e
�

[∫
�e

(�e
1+�̃

e
1)v ·∇�e

� d�+ 1

Pe

∫
�e

∇(�e
1) ·∇�e

� d�

]
+CPee1
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and the sum
∑

e∈e(i) Ee
i on the elements e(i) is constrained to vanish. Moreover, to let this sum

vanish whatever the mesh, it is then sufficient to impose each of its terms to vanish, Ee
i =0, while

selecting C=−1/Pe is required by the partition of unity constraint. Finally, the condition for �e1
is retrieved after some calculations and the other moment conditions, Equations (5), are obtained
by applying a cyclic permutation of the indices (1,2,3) to this condition.

It is easy to see that appropriate shape function perturbations can readily be determined from
Equations (5) (hence providing the test functions �e

� and the searched discrete formulation) in
the case of a constant velocity v and direction m. Now the case of a variable velocity must be
treated and the role of the direction vector m must be clarified. In the case of a non-constant v,
two simple procedures can be considered either by defining an average velocity on each element
e from which the perturbation functions �̃

e
� are directly obtained by Equations (5)–(8) or by

averaging the different sets of perturbation functions provided by the different nodal velocities
of each element. Both procedures provide continuous test functions with respect to the partition
of unity property. On the other hand, the test functions just found depend on m. Any technique
able to locally approximate the solution by a 1D expression of the form T p(x) should provide a
convenient m, which hence becomes a problem unknown assumed to be constant on each element
and from which the test functions are obtained by Equations (5)–(8). The general problem, which
resumes searching for the most appropriate direction vector m associated with a variable v and
possibly to the domain shape, lies beyond the scope of the present analysis and further results will
be published in subsequent papers.

3. RESULTS

Some typical results [5] obtained by means of the CPG method are here compared with their
counterparts obtained from the classical SUPG method [2].

3.1. Two-boundary layer problem

The problem depicted in Figure 1 takes its interest from the fact that the exact solution presents
two sharp boundary layers on the outflow boundaries at high Pe.

Figure 1. Two-boundary layer problem.
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Figure 2. Thermal boundary layer problem.

Figure 3. Two-boundary layer problem for �=1,30 and 45◦ (from left to right). CPG results (bottom)
are far better than SUPG results (top).

Numerical experiments are performed for Pe=106 on a 20×20 mesh made of rectangular
triangles. The solution obtained by using the SUPG method exhibits strong overshoots while the
CPG method provides an almost nodally exact solution for any orientation � of the velocity vector
(Figure 3). For the CPG result, m was taken as normal to the outflow boundary for the elements
having node(s) on that boundary while it was taken as equal to v for the other elements.

3.2. Thermal boundary layer problem

The problem is depicted in Figure 2. This situation may be viewed as modelling the formation
of a pair of thermal boundary layers along the lower and outflow boundaries of a fully developed
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Figure 4. Thermal boundary layer problem: SUPG (left) and CPG (right) results.

shear flow between two parallel plates, where the upper plate moves to the left while the bottom
plate is fixed.

Numerical experiments are performed with Pe=105 on a 20×10 mesh made of rectangular
triangles. Figure 4 compares the results obtained with the SUPG method and the CPG method
(with m=v). We observe that the solution provided by the CPG method clearly behaves much
better than the SUPG solution. In particular, it is noticeable that the SUPG method generates in
the downstream boundary layer a strong overshoot that propagates upstream in the lower boundary
layer, while the CPG method behaves much better.

4. CONCLUSIONS

A truly CPG FE method to solve convection-dominated problems has been proposed. Our approach
is based on using test functions that provide exact nodal values for a selected class of solutions.
Results of very high quality have been obtained. In order to build a general discretization and
solution algorithm, the research effort will be pursued, focusing on the selection of the numerical
direction m according to an appropriate criterion and the use of higher order elements (it can be
mentioned that our numerical experiments already show that a good m should always be normal to
the system boundary layers). Additional investigations will be devoted to handlemore general classes
of boundary conditions and to determine an appropriate weighting factor between the pure Galerkin
and CPGmethods in order to avoid the occurrence of unbounded test functions at very low Pe.

It is worth nothing that this research clearly indicates that accurate, reliable and CPG FE
methods can be built. In addition, the method we propose directly leads to defining appropriate
dimensionless element Péclet numbers and geometrical factors in order to exactly characterize
the local transport intensity and orientation with respect to the element shape, hence providing
rigorous tools to solve the convection–diffusion problem on general unstructured meshes.
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